MathNook

A blog about MathNook, math, math games, and more.

But Will it Work for My Kid?

July29

The last few posts have focused on the general advantage of turning math facts into a kind of video game, like we do at www.mathnook.com, and how doing so creates room for higher-order thinking skills in operational memory. I compared a brain with snap access to the needed math fact to a computer that is loaded with RAM, in which swapping data with the hard drive takes an infinitesimal amount of resources from the central processing unit (CPU). I created the cautionary tale of the reverse: a brain that has to spend all its time figuring out 18/3=6 is like a dinosaur of a computer, like a monster running Windows XP with 2G of RAM trying to run Adobe Creative Suite and crashing like a drinking glass hurled in frustration. Now, I decided to look at the research for kids with learning differences, particularly for those who are considered to have math handicaps to the point of earning the tag, “dyscalculia.”

First off. Let’s try a definition. The National Center for Learning Disabilities says that dyscalculia is a wide range of lifelong learning disabilities involving math. There is no single type of math disability. Dyscalculia can vary from person to person. And, it can affect people differently at different stages of life.

As opposed to dyslexia, which refers to a very specific impairment in image processing, dyscalculia has at least two roots: visual-spatial difficulties, in which the brain misinterprets what the eyes see, and auditory language processing difficulties, in which the brain doesn’t interpret what it hears in the absence of physical or language handicaps. As a parent, or as a teacher who teaches students with dyscalculia, this means that the problem is not set in stone. As the brain evolves, and all brains do, even mine, the neural pathways will change. Some will be reinforced, some will be backed up by roughly parallel ones, and some will be pruned if they fall into disuse. A person who “doesn’t get math” at age ten may develop a different toolset to apply to math at age sixteen, and become a STEM professional at twenty-four.

Still, our job is to provide something that works for your child or student(s), preferably last week. The reason why an attention-gripping, addictive video-game-style experience works for students with dyscalculia is that such children need access to their random-access memory even more than neurotypical kids. Back in 1990, when URLs looked something like this:

“1340475617315@compuserve.com,”

Research papers had to be photocopied and carted around in your backpack, they knew that attention-disordered and learning-disabled (the term “dyscalculic” hadn’t been invented yet) children suffered from the ability to access and retain math facts. Among paired findings of a study out of the University of Missouri (http://web.missouri.edu/~gearyd/Aphasiology.pdf), one conclusion is that the development of the prefrontal cortex, which governs what we call “executive functions,” is no different for dyscalculic kids with no further deficits than for the neurotypical kids (the other has to do with a pathway through the left occipital-parietal-temporal region, reinforced by several subcortical structures, but if you want to go this far into the weeds, you can click on the link above). Skip forward to 2005 (http://cercor.oxfordjournals.org/content/15/11/1779.full), when it was shown that younger children and children with dyscalculia rely more on the prefrontal cortex to solve arithmetic problems than older children and children who function at a higher level in arithmetic. The latter groups don’t need the involvement of executive function to the same level. They use that left occipital-parietal-temporal region, from the weeds of the University of Missouri paper.

What does that mean for us? Remember that virtually all the games at www.mathnook.com make grade level math facts reflexive, thus getting them out of the province of the executive function needed for higher-order thinking, and into that occipital-parietal-temporal sweet spot. Drilling and killing could do that for the few students who would submit to such discipline willingly, but the usual victim of skill-drill-and-kill is the student’s curiosity and affinity for math. What is true for neurotypical students is manifestly more true for students with learning difficulties from dyscalculia to mild mental retardation. On the upside, turning math fact acquisition into a game, even if the gamer is playing two or more years below grade level, supports just the kind of automaticity that leaves precious prefrontal cortical “head-space” available for integrative, higher-order thinking, learning, and synthesis.

posted under Uncategorized

Comments are closed.

This is a blog about Math Nook, math games, math and other fun and educational subjects.
Math Nook is owned by Jan and Tommy Hall.

Jan is retired from education where she spent 30 years in various positions ranging from classroom teacher to math specialist. She now spends her time working on the website and raising MathPup.

Tommy works full time but spends his free time utilizing his math degree and love of games to create some of the math games found on the website.