by | Jul 29, 2014 | Uncategorized
The last few posts have focused on the general advantage of turning math facts into a kind of video game, like we do at www.mathnook.com, and how doing so creates room for higher-order thinking skills in operational memory. I compared a brain with snap access to the needed math fact to a computer that is loaded with RAM, in which swapping data with the hard drive takes an infinitesimal amount of resources from the central processing unit (CPU). I created the cautionary tale of the reverse: a brain that has to spend all its time figuring out 18/3=6 is like a dinosaur of a computer, like a monster running Windows XP with 2G of RAM trying to run Adobe Creative Suite and crashing like a drinking glass hurled in frustration. Now, I decided to look at the research for kids with learning differences, particularly for those who are considered to have math handicaps to the point of earning the tag, “dyscalculia.”
First off. Let’s try a definition. The National Center for Learning Disabilities says that dyscalculia is a wide range of lifelong learning disabilities involving math. There is no single type of math disability. Dyscalculia can vary from person to person. And, it can affect people differently at different stages of life.
As opposed to dyslexia, which refers to a very specific impairment in image processing, dyscalculia has at least two roots: visual-spatial difficulties, in which the brain misinterprets what the eyes see, and auditory language processing difficulties, in which the brain doesn’t interpret what it hears in the absence of physical or language handicaps. As a parent, or as a teacher who teaches students with dyscalculia, this means that the problem is not set in stone. As the brain evolves, and all brains do, even mine, the neural pathways will change. Some will be reinforced, some will be backed up by roughly parallel ones, and some will be pruned if they fall into disuse. A person who “doesn’t get math” at age ten may develop a different toolset to apply to math at age sixteen, and become a STEM professional at twenty-four.
Still, our job is to provide something that works for your child or student(s), preferably last week. The reason why an attention-gripping, addictive video-game-style experience works for students with dyscalculia is that such children need access to their random-access memory even more than neurotypical kids. Back in 1990, when URLs looked something like this:
“[email protected],”
Research papers had to be photocopied and carted around in your backpack, they knew that attention-disordered and learning-disabled (the term “dyscalculic” hadn’t been invented yet) children suffered from the ability to access and retain math facts. Among paired findings of a study out of the University of Missouri (http://web.missouri.edu/~gearyd/Aphasiology.pdf), one conclusion is that the development of the prefrontal cortex, which governs what we call “executive functions,” is no different for dyscalculic kids with no further deficits than for the neurotypical kids (the other has to do with a pathway through the left occipital-parietal-temporal region, reinforced by several subcortical structures, but if you want to go this far into the weeds, you can click on the link above). Skip forward to 2005 (http://cercor.oxfordjournals.org/content/15/11/1779.full), when it was shown that younger children and children with dyscalculia rely more on the prefrontal cortex to solve arithmetic problems than older children and children who function at a higher level in arithmetic. The latter groups don’t need the involvement of executive function to the same level. They use that left occipital-parietal-temporal region, from the weeds of the University of Missouri paper.
What does that mean for us? Remember that virtually all the games at www.mathnook.com make grade level math facts reflexive, thus getting them out of the province of the executive function needed for higher-order thinking, and into that occipital-parietal-temporal sweet spot. Drilling and killing could do that for the few students who would submit to such discipline willingly, but the usual victim of skill-drill-and-kill is the student’s curiosity and affinity for math. What is true for neurotypical students is manifestly more true for students with learning difficulties from dyscalculia to mild mental retardation. On the upside, turning math fact acquisition into a game, even if the gamer is playing two or more years below grade level, supports just the kind of automaticity that leaves precious prefrontal cortical “head-space” available for integrative, higher-order thinking, learning, and synthesis.
by | Jul 23, 2014 | Math, Math Games, Math Nook
PROCESS:
Prefrontal cortex recognizes need for data
Math fact data “delivered” to prefrontal cortex
Prefrontal cortex combines fact recall with rules and patterns, resulting in skilled problem solving
Pictures at www,mathnook,com/blog
Why Fact Games Work
Readers of this column know that we at www.mathnook.com believe that there is value to rote memorization, but that “skilling, drilling, and killing” students with facts and procedures simply kills kids’ motivation to learn, or even to try. It seems like an impossible dichotomy, but in fact, there is a simple analogy to something we all encounter on a daily basis. Do you have an old computer, a warhorse relic from ten or more years ago? Other than warning you to check continuously for viruses on your XP machine (please don’t pass your viruses to us!), I want you to remember what it is like to try to stream a movie, write music, or develop your own graphics with a machine that was built long before Netflix and the Adobe Creative Suite™.
You are sitting there fuming as your machine keeps saying things like, “Adobe Creative Suite (not responding).” You are tempted to yell at it, “You’re a machine! Stop ‘not responding,’ respond!” Finally, you slam down Ctrl-Alt-Delete and find out that your CPU usage is stuck at 100%. Permit me this geek moment, but I can explain just why this is happening.
Let’s say that your computer has something like 2 gigabytes worth of random access memory (RAM). Adobe Creative Suite™ requires almost all of that for the program to work. The closer you get to full utilization of your computer’s RAM, the more your CPU (central processing unit) takes over the work, which slows your computer down like the carapace on a giant turtle.
Is your child, or your classroom if you are a teacher, trying to compute with too little RAM? If so, the part of the brain that we think is responsible for storage and recall of math knowledge is underutilized, while the parts which should be retrieving the data from centers like the parieto-occipital sulcus, is busy pretending to be RAM. You can buy more RAM quite cheaply for your computer. Why not buy some more RAM for your problem-solving centers to query, by getting the math facts out of the way? Relegating facts to the random-access memory part of the brain frees the prefrontal cortex to organize itself around problem-solving, not fact recall.
For an example, let’s look at the long division algorithm. On the left of the table below, you will find the step, and on the right, the brain processing step that should go into applying stored data. We are going to assume a neurotypical student with at least an adequate storage for math facts and rules.
Step Brain Process
1. set divisor outside the box and dividend inside it Rule recall
2. Estimate how many times the divisor will fit into the dividend, or into the appropriate place value of the dividend Higher-order processing
3. Multiply the divisor by your estimate in step 2 Fact recall; maybe recall of multiplication subroutine
4. Subtract result in Step 3 from dividend Fact recall, application of place value (higher order knowledge) and regrouping rules
5. Repeat (iterate) steps 2-4 until there is no remainder or the desired level of accuracy is reached Higher-order processing, fact recall, and assimilation of rules, facts, and applications.
6. Report the results Mathematical language
Even as I look at this, I’m astonished that some students who manage to become proficient at math remain unable to zap you with “42” when you ask them, “Seven times six?” If you have to work out the staggering number of math facts in every long division problem, by the time you reach algebra, your prefrontal cortex is going to be like that dinosaur computer running Windows XP that we met at the beginning of this entry.
The games at www.mathnook.com don’t claim to train your prefrontal cortex for higher-level functions. A regular visitor to this site will, however, reduce the cognitive load on the part of the brain that needs to send out data requests and integrate the responses into an answer.
by | Jul 14, 2014 | Uncategorized
Apples and…Basketballs? I recently had the opportunity to talk with Alfie Kohn, one of my favorite theorists of education. In fact, I asked him if he might have a look at some of the games on our site. It was with a sense of dread that I opened up his email later that afternoon.
Mr. Kohn (If he holds a Ph. D., he is self-effacing enough never to mention it, even on his blog, www.alfiekohn.com) is a leader in a counterrevolution in American letters, whether kindergarten mathematical reasoning or applied political philosophy. He’s a fan of situated learning, which is to say, giving children tasks that are inherently worth doing, and working the specific fact learning in at the margins. I appreciate his point of view, and I really, really wish that American education would have taken that course when it played with going that direction in the post-McCarthy Era through the Sixties. Situated learning is associated with thinkers like John Dewey, and it brought us victory in the Space Race with the Soviets – that same empire that is piecing itself back together over the bodies of Ukrainians, and before that, Georgians (that is, the kind whose last name ends with “-vili,” not the kind that keeps winning the National League East). Clearly, setting children loose with meaningful tasks is a great way to help them think about math, and at www.mathnook.com, we mostly turn fact recall and algebraic problem-solving into a matter of rapid-fire muscle memory.
So would Alfie (as he prefers) rip me a new one, given that what we have done on Mathnook.com has nothing in common with what he proposes as a way to educate students to be able to apply mathematical reasoning to real problems great and small? No. He said, “While in principle I think that this kind of game is counterproductive, it is so only if the game is used to replace situated learning, not to supplement it (emphasis mine).” In other words, the corporate education system is screaming for kids to learn math by rote so that they can fill in those bubbles quickly and accurately, which Alfie rejects (see the abstract from “The Schools Our Children Deserve” on his website at http://www.alfiekohn.org/teaching/math.htm), but at www.mathnook.com, we don’t prepare kids to do that! We simply take advantage of the fact that anything that sucks you in and grabs your attention is going to make an impression.
Is it “worthwhile mathematics” to know by fast-twitch muscle response that 7×6=42, or equally hateful, that 7×8=56? Well, no. However, if the student who could devote an hour to Candy Crush Saga spends it instead on the mastery of math trivia to the point of not having to spend a scintilla of effort on how many sides in a hexagon, the product of 7×6 (or 7×8, for that matter), or what x makes 3x-1=20 true, might that student be free of “skill, drill, and kill” forever and be free to explore math in context of life? I think so. The second-youngest President of the United States attributed his ability to succeed at what mattered to his ability to routinize everything that doesn’t. You would never catch this man dead designing his daily workouts, figuring out what to eat for breakfast, mixing and matching his wardrobe, or any of a host of tasks in which you and I sink precious energy.
So what about comparing apples to basketballs? Last week, we discussed the fact that a highly complex math simulator, DimensionM (not a Mathnook product, alas), has been shown in at least one peer-reviewed study to increase skill, aptitude, and interest in high-school level algebra among middle-school students, family background and economics factored out. DimensionM is a highly sophisticated simulation that has more to do with James Cameron’s Avatar than with the simple designs that allow me to get so many games up so fast. Yet, I get similar results. Why? Let’s say that DimensionM is an apple, crisp, cold, and healthy. If you want a healthy math mind, you want to evangelize DimensionM and similar products as opposed to wasteful social media and mindless entertainment – the potato chips and Milky Way bars of consumer electronics. However, developing a healthy math aptitude requires a good diet and a healthy dose of exercise. Consider Mathnook.com the basketball. Let’s play!
P. S. For those of you who want to teach oddball facts like 7×6 and 7×8, let me give you an idea. Two, actually.
1) Divide and conquer. Most people have 7×3=21 and 7×4=28 (fewer this one) committed to memory, and may even be able to produce an array of seven rows and three or four columns. Using the associative property, 7×6 = (7×3)x2, or (7×3)+(7×3) = 21+21 = 42. Similarly, 7×8=(7×4)x2, (7×4)+(7×4), 28+28, or 56.
2) Nearest square: Most people can give you 6^2=36, 7^2=49, and 8^2 (chessboard) = 64. Adding one more six to 36 depends on knowing what multiplication means, but I am all for learning the meaning before practicing the facts. Similarly, adding a seven to 49 or subtracting an eight from 64, while a little more arithmetically cumbersome, amounts to the same thing.
by | Jul 9, 2014 | Uncategorized
How many science, tech, engineering and math (STEM) teachers do you think enter the US workforce every year? A few hundred thousand? Surely, at least fifty thousand, right? Try again. Since 2004, both the present Democratic administration and its Republican predecessor have begged Congress to enact into law a plan to graduate a measly 10,000 new highly-qualified (more on that term in a future posting), jolted me out of my chair when I read it; the US actually falls short of even that modest goal. The persistence of the 10,000-a-year goal for STEM educators demonstrates how hard it will be to develop even this human resource.
On the other hand, games like Worlds of Warcraft reach millions of new users every year (in the case of WoW, four million in 2012, according to www.statista.com ), and Food Force, the food security simulator from the UN got played a million times in its first six months after launch. Who does the student listen to more, the poor algebra teacher (who might not have as much as a math minor in college), or the flashing, blaring, addictive video game (see last week’s post on “Addicted to Math?”). Many people are lining up on the side of the video game here, noting the smashing success of Khan Academy and the “flipped classroom” model – homework in class, lectures at home from Khan.
What about effectiveness? Surely, the personal touch does better than the Max Headroom approach. Well, maybe not. A far more complex game than we offer (yet!) at www.mathnook.com, DimensionM, recently received a peer-reviewed grade by a major UK journal. The gamers showed a lasting boost in algebra skills and yes, in interest. Interest in math! Even math teachers report that their worst day of the year is that dreaded “What do you like or dislike most about math?” day. That’s the day when students get to kill their math teachers, lumping them in the category of oral surgeons at the dental clinic. Just the very possibility that electronics might dissolve the emotional barrier against STEM learning has us tickled and giggling (for a counteropinion, albeit earlier than the Dimension M paper, click through to this paper which thinks math games are a mixed lot).
Another research paper raises a more pithy question: “How can learning design maintain a sense of the wonder and joy of learning, minimize math anxiety, and improve performance on standardized tests?” No, really. They wrote that last clause, not us. The point is that we have to find ways to teach that fit the brain’s natural way of learning, which means that “development of left-brain skills that depend on sequential action and thought (reading, writing and arithmetic) must be complemented by development of the holistic, creative processes by means of right-brained activities such as visual support, story-telling, and role playing.” This includes dealing with the emotional component of learning, too. There is a negative feedback loop between seeking behavior and fear, anger, and panic. Seeking behavior is reinforced by play and attention, creating a positive feedback loop with more seeking as the result.
READERS RESPOND: What are the STEM fields if not the epitome of seeking? If you find this question pithy enough, visit us and let us know.
by tjh001 | May 13, 2014 | Uncategorized

While some individuals may be born with a naturally elevated intellectual capacity, intelligence is not necessarily solely an innate trait. Most smart minds develop overtime through proper care, exercise, and routine maintenance. Though schooling absolutely enhances cognition, going to school is not the only means by which one can strengthen mind function. Are you interested in heightening your intelligence? Here are a few of the best ways to increase mental capacity.
Meditation: Meditation calms the mind, while also, as research shows, changes the structure of the brain, increasing memory capacity, and improving focus and attention span. Meditative practices can vary person to person, but focusing on the breath is a great way for mediators to begin moving into their practice. Overtime, regular daily mediation can teach your mind how to work for efficiently, thereby increasing your mental speed and capacity for varied thought.
Get Healthy: Daily exercise and proper diet benefit both body and mind. The physical condition of the body directly affects cognition. If the body is in poor shape, the blood stream heavily populated with toxins from poor diet or low exercise levels, it becomes more difficult for oxygen to reach the brain, siphoning off vital fuel, thereby decreasing mental functioning. Incorporating a regular exercise regimen into your daily life, and maintaining a healthy and organic based diet can help your keep your body, your mind’s home and feeding ground, in its best possible condition for proper mental function and intellectual growth.
Sleep: Regular sleep is a vital variable in the equation for a well-running mind. Researchers actually surmise that during sleep, the unconscious mind files and organizes thoughts from the prior day, readying the mind for what lies in store for the future. Brains without regular sleep suffer from memory impairment, decreased motor skill function, and weakened focus. Lack of sleep can also increase anxiety levels. To give your brain its best shot at expanded intelligence, be sure to get at least eight hours of sleep nightly.
Brain Exercise: As all body parts need regular exercising and strengthening to maintain proper functioning levels, so too does the brain. Exercising your brain can be as simple as alternating your teeth brushing hand, or driving a different way to work. Doing math exercises or playing games like Sudoku are also great ways to keep your brain in shape for extended cognitive capacity and increased function.
Are you interested in exercising your brain? Math Nook offers fun and educational math computer games to work out your brain and increase intellectual capacity.